Prediction of Software Defects using Ensemble Machine Learning Techniques

نویسندگان

چکیده

During software development and maintenance, predicting bugs becomes critical. Defect prediction early in the life cycle is an important aspect of quality assurance process that has received a lot attention previous two decades. Early detection defective modules can support team efficiently effectively utilizing available resources to provide high-quality products short amount time. The machine learning approach, which works by detecting hidden patterns among features, excellent way identify problematic modules. flaws NASA datasets MC1, MW1, KC3, PC4 are predicted using multiple classification algorithms this work. A new model was developed based on altering parameters XGBoost model, including N_estimator, rate, max depth, subsample. results were compared those obtained state-of-the-art models, our outperformed them across all datasets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Spatial Prediction Using Ensemble Machine Learning.

Spatial prediction is an important problem in many scientific disciplines. Super Learner is an ensemble prediction approach related to stacked generalization that uses cross-validation to search for the optimal predictor amongst all convex combinations of a heterogeneous candidate set. It has been applied to non-spatial data, where theoretical results demonstrate it will perform asymptotically ...

متن کامل

Software Defect Prediction Using Ensemble Learning Survey

Machine learning is a science that explores the building and study of algorithms that can learn from the data. Machine learning process is the union of statistics and artificial intelligence and is closely related to computational statistics. Machine learning takes decisions based on the qualities of the studied data using statistics and adding more advanced artificial intelligence heuristics a...

متن کامل

Hypertension Prediction in Primary School Students Using an Ensemble Machine Learning Method

Introduction: The prevalence of hypertension in children is increasing, and this complication is considered the most important risk factor for cardiovascular diseases in older age. Early detection and control of hypertension can prevent its progress and reduce its consequences. Machine learning methods can help predict this complication promptly and reduce cost and time. This study aimed to pro...

متن کامل

Hypertension Prediction in Primary School Students Using an Ensemble Machine Learning Method

Introduction: The prevalence of hypertension in children is increasing, and this complication is considered the most important risk factor for cardiovascular diseases in older age. Early detection and control of hypertension can prevent its progress and reduce its consequences. Machine learning methods can help predict this complication promptly and reduce cost and time. This study aimed to pro...

متن کامل

Gene Prediction Using Machine Learning Techniques

The basic purpose of the research work aims at predicting the genes of interest in molecular sequence databases using machine learning techniques like neural networks, decision trees, data mining, hidden markov models etc The primary focus of the research will be on proposing new or improving already existing ab initio and homology based methods for gene prediction. The proposed methods will be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International journal of recent technology and engineering

سال: 2023

ISSN: ['2277-3878']

DOI: https://doi.org/10.35940/ijrte.e7421.0111523